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1  | INTRODUC TION

There is significant uncertainty about the degree to which the novel 
coronavirus (COVID-19) has spread. This is particularly true over the 
period when, in many European countries, those testing positive for 
the infection rose fast and subsequently slowed markedly. Over the 
period between February and May 2020, in most countries, there 
was no mass testing. Although testing capacity did rise, it did so 
along with the rise in infections and testing was largely confined 
to those with symptoms. This has very significant policy implica-
tions—Stock1 showed that different policies aimed at controlling the 

virus can have very different effects on the numbers who become 
infected and show symptoms depending on the proportion of those 
who are asymptomatic. It is those with symptoms who are at risk of 
death from the virus and so the relative size of the populations of 
symptomatic to asymptomatic among the infected is of enormous 
significance to welfare, including mortality rates, and to policy. 2

The degree of uncertainty about that asymptomatic rate is large 
enough to mean that neither 0.3 nor 0.9 is outside the range of 
plausible values, although the implications of those two numbers 
are very different. Li et al3 estimated that 86% of all infections were 
undocumented prior to the Wuhan travel shutdown (on 23 January 
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Background: Assessing why the spread of the COVID-19 virus slowed down in many 
countries in March through to May of 2020 is of great significance. The relative role 
of restrictions on behaviour (“lockdowns”) and of a natural slowing for other reasons 
is difficult to assess when mass testing was not widely done. This paper assesses the 
evolution of the spread of the COVID-19 virus over this period when there was no 
data on test results for a large, random sample of the population.
Method: We estimate a version of the susceptible-infected-recovered model applied 
to data on the numbers who were tested positive in several countries over the period 
when the virus spread very fast and then its spread slowed sharply. Up to the end 
of April 2020, test data came from non-random samples of populations who were 
overwhelmingly those who displayed symptoms. Using data from a period when the 
criteria used for testing (which was that people had clear symptoms) was relatively 
consistent is important in drawing out the message from test results. We use this 
data to assess two things: how large might be the group of those infected who were 
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the infection.
Results: We find that to match data on daily new cases of the virus, the estimated 
model favours high values for the number of people infected but not recorded.
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2020). In contrast, estimates based on infections among passengers 
on the cruise ship Diamond Princess put the proportion of asymp-
tomatic (or near asymptomatic) cases at around 50%. Manski and 
Molinari4 reported enormous ranges for the possible values of the 
infection	 rates	 in	 Illinois,	New	York	 and	 Italy.	 As	 of	 6	April	 2020,	
these ranges were estimated as [0.001, 0.517], [0.008, 0.645] and 
[0.003, 0.510], respectively.

While large-scale testing of a random sample of the population 
would narrow the range of plausible values for the asymptomatic 
proportion of the infected,1 such testing did not come in many 
countries until after the end of April. That makes it harder to judge 
now why the spread of the infection seemed to slow so sharply 
in March and April. In most countries, including the United States 
and the United Kingdom, testing up to the end of April 2020 was 
concentrated on those who displayed symptoms or were at high 
risk; it was certainly not random. However, testing capacity did 
rise strongly over this period; in the United Kingdom, testing went 
from under 10 000 a day in early March to almost 100 000 a day 
by	early	May	(according	to	Office	for	National	Statistics	data).	Until	
late April, UK testing was overwhelmingly done in hospitals on those 
who displayed symptoms of the virus. So called “pillar 2” tests have 
subsequently increased greatly and are carried out on the wider 
population outside of hospitals.

In this paper, we implement a version of the susceptible-infect-
ed-recovered (SIR) model to estimate the numbers infected from 
data on the non-random sample of those tested. We use data from 
the United Kingdom, where relatively few of those showing no 
symptoms had been tested up to the end of April 2020, to provide 
estimates of the spread of the virus over that period.

We also apply the model to the United States, Italy, Spain, France 
and Sweden. In doing so, we allow the estimated parameters of the 
model to vary thereby accounting for a range of factors that are dif-
ferent between countries and which are likely to affect the spread 
of the virus. Population density, climate, age structure, working 
patterns, family structure and living arrangements are likely to vary 
across countries and have an impact on how the virus is transmit-
ted. Our statistical technique allows for these factors that differ 
between countries, but which are relatively stable within countries 
over the months we focus on.

The results for these countries are similar to the United Kingdom—
the numbers of those untested but infected that seems to best fit the 
data are very high; far higher than is estimated based on the limited 
amount of results from more widespread testing which went beyond 
those who showed symptoms. But other studies using UK data do 
find evidence of wider spread of the virus in March and April. An 
Oxford University research team used death data to estimate the 
proportion of the population who might have built up some form of 
immunity before the UK lockdown was introduced in mid-March. 
They put that fraction at around 60%.5 Stedman et al6 used data on 
differences in the spread of the infection across English regions to 
assess how many might have been infected and put that fraction at 
similarly high levels, which is similar to the study by Delius et al7

2  | THE MODEL

We use a version of the SIR model which closely follows the model 
used by Stock.1 At each point in time, the population is made up of 
three distinct groups: those who are currently infected (It); those 
who are susceptible (St) and those who have recovered (Rt). We as-
sume a constant population and that the death rate is low enough 
to mean that this is reasonable. At each point in time, only some 
fraction of those infected are tested and show a positive result. 
Over the period we consider, it is likely that many of those who 
were infected but not tested had mild, or no, symptoms. We use 
the symbol �a to denote the fraction of those infected who are 
not recorded. There is some evidence that the degree to which 
the asymptomatic are infectious may be different from those who 
have symptoms,8 but we will initially assume that the transmission 
rates are the same for those infected, whether tested or not. We 
denote the number of people infected at time t  by It. We distin-
guish within this group between those who have tested positive 
(denoted Ist) and those who were not tested or incorrectly tested 
negative (Iat) such that It = Ist + Iat. (We use the subscripts s and a for 
these groups because those who were tested were disproportion-
ately those with symptoms while those who were infected but not 
tested were likely to have had a higher proportion of the asympto-
matic). The evolution of St, It and Rt in discrete time is given by the 
dynamic system:

where ΔS is the change in the population of the susceptible, N is the 
total population, �t is the transmission rate of the virus at a time t (the 
mean number of people an infectious person will infect per unit time) 
and � is the rate of recovery. The initial infection rate over the infec-
tious period, the reproduction number, is defined as R0 =

�t

�
. Initially, 

we shall assume that �a is a constant so that

(1)ΔSt = −�tIt−1
St−1

N

(2)ΔRt = �It−1

(3)ΔIt = �tIt−1
St−1

N
− �It−1,

What’s known

• While there are estimates of the spread of the virus, 
they cover a very large range and are highly uncertain.

What’s new

• We use a technique which pays great attention to unre-
corded cases to estimate the spread of the virus and its 
contribution to the slowing spread in the Spring of 2020.
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and

The number of new cases at time t (yt) can be calculated as 
follows:

New	cases	are	the	sum	of	the	change	in	the	number	of	outstand-
ing cases plus the numbers recovered. The number of new recorded 
cases (yst) is as follows:

The strategy that we pursue is to use the data on the numbers 
of new cases who test positive for the virus. We then seek the val-
ues of the parameters of the model—and in particular �a—that give a 
predicted yst that matches the data. We use data on the numbers of 
those who test positive (in the United Kingdom and in other coun-
tries) as the variable we are trying to match; other studies5,9 use the 
number of deaths. There would seem to be significant ambiguity 
over assignment of the cause of death to the virus, perhaps more 
than over whether a positive test is reliable or not.

We use data on tests up the end of April 2020 by which time 
nearly 500 000 had been tested in the United Kingdom and around 
175 000 had tested positive (according to data from the Office of 
National	Statistics).	It	is	over	this	period	that	new	cases	testing	posi-
tive first rose dramatically and then began to fall sharply a few weeks 
after lockdown began. It is the main purpose of this paper to identify 
the contribution to this slowdown of behavioural changes and of the 
natural dynamics of infections arising from a shifting stock of those 
who have been infected. This is why we focus on the February–April 
period.

To implement the estimation of the model, we need to make 
assumptions about the transmission rate of the virus �t and the 
recovery rate �. The transmission rate will not have been constant 
because of policy measures introduced to slow the spread of the 
infection and because of behavioural changes that were happening 
even in the runup to the lockdown. In the United Kingdom, “lock-
down,” which began on March 23, was strict and social distancing 
was already happening just before this date; both would have likely 
brought � down significantly. Similar policies were adopted at vari-
ous times in March 2020 in other countries. We assume a constant 
value of �t before the lockdown date (of �0), followed by a gradual 
reduction in the �t value after this date to simulate the effect the 
measures have on transmission. The initial value of �0 is derived from 
the value of the initial reproduction rate R0 and the recovery rate �,  
using the relation �0 = �R0. We try all values for an initial reproduc-
tion rate ranging from 2.2 up to 3.9 at intervals of 0.005. We try 

three values of the recovery rate implied by half lives of the period of 
infectiousness—that is the number of days it takes for half an initial 
number of infected people to recover—of 4 days, 6 days (as used by 
James1) and 8 days. The corresponding three values of � are 0.159, 
0.109 and 0.0833.

We assume that after the lockdown date there is a lag until the 
value of �t starts to change from �0. The lag is between the lockdown 
measures starting and the impact on the numbers testing positive 
for the virus. That lag reflects several distinct factors: it must in-
clude the lag in the impact on new infections, the lag before symp-
toms show, the lag before testing the symptomatic and finally the 
lag before results are known and recorded in the daily measure. We 
not only set the overall lag at 14 days, but also assess sensitivity of 
results to shorter lags in part because social distancing was already 
happening just before lockdown. After this lag, � decays exponen-
tially towards a value of �L, the post-lockdown asymptotic �. The 
time path for �t can be expressed as follows:

where t ∗ is the lockdown time plus the 14-day lag period and � is the 
speed of adjustment in � after lockdown measures begin to take effect. 
We assume that once the lockdown does begin to affect numbers test-
ing positive it quite quickly reaches its full effectiveness, bringing the 
transmission rate down so that half of its long run impact on � comes 
through in 3 days, implying that � = 0.231.

For given values of �, �0 and �, we search for the values of the two 
free parameters—�L and �a—so as to maximise the fit of the model. 
We choose those two free parameters to minimise the root mean 
squared (RMS) deviation between the daily data on the numbers 
of new positive tests for the virus and the model prediction of that 
number (yst). The parameters we fit are a measure of how effective 
the lockdown is in bringing down the infection rate (measured by 
how much lower �L is relative to �0) and the ratio of those infected 
but not tested to the total population of the infected (�a).

These key parameters are the ones which best match each coun-
try's data on test results. Separate estimation of these parameters 
for each country allow for cross-country differences in characteris-
tics that might affect the spread of the virus.

3  | SENSITIVIT Y TO KE Y A SSUMPTIONS 
AND C ALIBR ATION

Before showing results, we stress that our model relies on a number 
of key assumptions.

In its simplest version, we assume �a is a constant but we then 
allow for it to vary with changes in testing capacity. Overall, rela-
tively few in the United Kingdom with no symptoms had been tested 
up to the end of April 2020. For the other countries, we are also fo-
cusing on a period over which testing was largely confined to those 

(4)Ist =
(
1 − �a

)
It

(5)Iat = �aIt.

(6)yt = ΔIt + �It−1.

(7)yst =
(
1 − �a

) (
ΔIt + �It−1

)
=
(
1 − �a

)(
�tIt−1

St−1

N

)
.

(8)𝛽t =

⎧
⎪⎨⎪⎩

𝛽0, if t≤ t∗

𝛽0−
�
𝛽0−𝛽L

� �
1−e−(t−t

∗)𝜆
�
if t> t∗,



4 of 10  |     MILES and dIMdORE-MILES

with clear symptoms. This is important because it means that the 
results from tests over this period can be expected to reflect the 
spread of the virus much better than if we extend the period to one 
where testing became far more widely available to those with few or 
no	symptoms.	Nonetheless	there	was	some	variability	in	the	criteria	
for testing over the period up to the end of April 2020. In the United 
Kingdom, testing was ramped up strongly in late April and as it was, 
the ratio of daily positive tests to total tests fell. We take account of 
the possible impact of that below but first continue with the assump-
tion of a fixed �a.

For the United Kingdom, the model is initialised on data from 
the 31st of January, the date on which the first non-zero value of 
positive test cases is recorded. At this time, testing was only applied 
to those who had travelled to certain regions of China and presented 
with symptoms and therefore data in the first week or so may not be 
fully representative of all symptomatic cases.

We rely on estimates of R0 and of � to generate a value for �0.  
There is considerable uncertainty about both. At the lower end 
of the ranges of values used in simulations are those chosen by 
Ferguson et al,8 who assume a value of 2.4, and Lourenco et al5 
who take figures centred around 2.25 or 2.75. Stock,1 who draws 
on estimates using data from Wuhan, uses a much higher figure for 
simulations with a pre-shutdown value for R0 of 3.8. The range of es-
timates of R0 from several studies is between 2.2 and as high as 3.9. A 
team at the London School of Hygiene and Tropical Medicine found 
11 published estimates of R0 for COVID-19, which averaged 2.68 
with a standard deviation of 0.57 (see Paul Taylor, London Review 
of Books, May 2020, vol 42, no 9). The range we use for simulations 
is 2.2-3.9—values outside this range gave a poor fit to the data for 
all countries we analysed for any values of the other parameters. For 
our estimate of �, we assume the half-life of the infection as x days 
and therefore that � satisfies the (1 − � ) x = 0.5. We take x as 4, 6 or 
8 days—a range which encompasses those used in several studies.

As noted above, we assume that once lockdown begins beta is 
reduced so that it declines asymptotically towards a value that would 
then be maintained as long as the lockdown remains in place (�L in 

our equations). Our choice of the speed with which β declines to-
wards its steady-state value, after the initial lag, is such that the tran-
sition is fairly rapid, corresponding to a half-life of 3 days (� = 0.231).

The data we try to fit is the number of new infections recorded. 
Testing of people with no symptoms was (up to late April 2020) rel-
atively small scale in the countries we analyse and to a large extent 
limited to those at high risk. We use a grid search to find the values 
of the two unknown and free parameters (�L and �a) to minimise the 
root mean squared deviation between the observations and (yst), 
given the choice of other parameters.

4  | RESULTS

Figure 1 shows the data on new cases of those testing positive for 
the virus in the United Kingdom. The data start on January 31. The 
data	 are	 from	 the	Office	 for	 National	 Statistics.	 (The	 spike	 in	 re-
ported new cases on 11 April 2020 coincides with an expansion in 
testing capacity.)

Figure 2 shows the best fit of the model when we set the half-life 
of the infection to 6 days (� = 0.109). The best fit for this value of � 
was when R0 = 2.5 and �L and �a are 0.1928 and 0.996, respectively. 
These values imply that the transmission rate started to turn down 
sharply by the end of first week of April, some 2 weeks after the 
lockdown began. The value for �a is very high—implying that, in the 
period up to the end of April, there were around 250 people with 
the infection for every person who tested positive. If that were true, 
then by April 20 around 120 000 had tested positive for the virus 
(and the great majority of whom had shown symptoms) close to 45% 
of the UK population might have had the virus.

Figure 3 shows the RMS error of the model for all combinations of 
parameters �a and �L. The area on the far right of the figure shows the 
fit of the model in cases where the lockdown had limited effect (ie �L 
is little different from �0). The model fits the data very poorly in this 
region—as illustrated by the darker shading which reflects a high value 
of the RMS error—suggesting the lockdown had a significant impact.

F I G U R E  1   Time series of daily new 
positive COVID-19 cases recorded in the 
UK between 31 January and 30 April 
2020
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Figure 4 shows the model fit to the UK data when we set the 
half-life of the virus at 8 days (� = 0.0833). The best fit here was with 
a value of R0 of 2.95 and �L and �a of 0.1598 and 0.996, respectively. 

Once again the best fit value of �a is very high and it implies that 
approximately 45% of the UK population may have been infected 
by late April. Figure 5 shows the parameter combinations that have 

F I G U R E  2   Results from the free 
parameter optimisation of the model with 
γ = 0.109. UK new case data from Figure 1 
given as a proportion of total population 
(blue) and model simulation for γst that 
gives the best fit to the UK data (green)

F I G U R E  3   RMS difference between 
UK new case data and γst for all 
combinations of πa and βL for simulations 
with γ = 0.109. The combination that 
gives the lowest RMS value (the best fit) 
is shown as a red dot. The combinations 
that give and RMS value within 10% of the 
minimum RMS are shown in green

F I G U R E  4   Like Figure 2 with 
γ = 0.0833
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a goodness of fit within 10% of the best pair of values; once again 
these are bunched fairly closely around the best fit values with all 
such pairs generating a value of �a close to 0.996. The fit of the 
model deteriorates so sharply when we set the half-life of the virus 
to be only 4 days that we do not show those results. The param-
eter space in Figure 5 shows the best fit parameters (red dot) and 
also the parameter combinations that generate a RMS error within 
10% of the best value. This is illustrative of the degree of uncertainty 
around the best fit values of the two parameters.

However, it is difficult to construct precise confidence regions 
around the best-fit parameter estimates. In the appendix, we discuss 
robust methods for calculating confidence intervals on these param-
eter estimates. Using these intervals, our results suggest that one 
could reject the hypothesis that �a is below 0.9 at the 10% level of 
statistical significance, but not at higher levels. In short, one cannot 
be very sure that the main reason why test cases of those newly 
infected turned down was because a large fraction of the population 
had already been infected (very high �a) rather than a low value of �L 
(a	very	effective	lockdown).	Nonetheless,	as	we	describe	in	more	de-
tail below, we consistently find the best fit for the data (for both the 
United Kingdom and other countries) is for a very high value of �a.

5  | ALLOWING�a  TO	VARY	WITH	TESTING	
CAPACITY

Testing capacity rose significantly in the United Kingdom particu-
larly in the last 2 weeks of April 2020. It is possible that along with 
this rise in testing capacity there was a significant change in the pro-
portion of new infections that were recorded as positive tests; this 
would invalidate the assumption of a constant �a. However, the fact 
that test capacity rose significantly need not mean that recorded 
cases rise as a proportion of all infections. If test capacity simply 
rises in line with new cases of the infection, �a may well be approxi-
mately constant.

We assess whether the evidence suggests that �a varies signifi-
cantly with testing capacity. We do so by allowing for the value of �a 
to systematically vary with the fraction of test results that are pos-
itive. The idea is simple: if testing capacity has substantially moved 
ahead of the rise in new infections, then more people who would not 
have been tested when capacity was used largely on those with clear 
symptoms will now be tested. As this happens, the fraction of tests 
which are positive is likely to decline along with a fall in the fraction 
of new infections that are not recorded. We now allow the value of 
�a to vary with pt, the fraction of positive tests to total tests at time t.  
We allow for a flexible non-linear form of this relation. This is given 
as follows:

where �at is �a at time t, that is the fraction of unrecorded new cases 
to all new infections. b1 and b2 are the parameters we estimate to best 
fit the data. The natural log is denoted ln. We expect b2 to be non-neg-
ative. If b2 is positive then as the proportion of positive tests to total 
tests falls (which would happen if testing capacity rises much faster 
than the numbers becoming infected) the fraction of unrecorded new 
cases of the virus also falls. A special case of (9) is when b2 = 0 and �at is 
constant, the assumption we made in estimates shown in the previous 
section.	Now	we	carry	out	a	grid	search	over	values	b1, b2 and �L to 
minimise the RMS error of the model. We calculate the series pt as the 
ratio of daily new cases to daily total tests using data from the Office 
for	National	Statistics.

When we estimate these parameters, we find that the value of 
b2 that best fitted the data was 0. At first glance, this seems sur-
prising because testing capacity was clearly not constant. But what 
matters is testing capacity relative to the scale of infection which 
was likely much less variable than the number of tests undertaken. 
Nonetheless	there	are	small	positive	values	of	b2 which fit the data 
almost as well as b2 = 0 and which give notably different variations 

(9)ln

(
�at

1 − �at

)
= b1 + b2

[
ln

(
pt

1 − pt

)]
,

F I G U R E  5   Like Figure 3 with 
γ = 0.0833
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in �at. Figure 6 illustrates the model when we set b2 = 0.1. In this 
case, the fit of the model deteriorates by just over 25% relative to 
when b2 = 0 and when �at is constant—though it could not be re-
jected at standard significance levels. The implied path of �at is far 
from constant and significantly lower than when we assume it is a 
constant (Figures 3 and 5). This value of b2 would imply that in April 
2020 when �at was around 0.93 there were around 14 unmeasured 
infections for every measured one—a far lower ratio than if �at was 
at 0.99 or higher when the unrecorded cases would be at least 100 
times as great as the recorded cases. At values of b2 above 0.1, the 
quality of fit of the model deteriorates significantly and such values 
can be rejected using similar tests to those outlined in Appendix A.

6  | RESULTS FOR FR ANCE , UNITED 
STATES,  ITALY,  SPAIN AND SWEDEN

We described above that the model that best fits the UK data was 
one with constant �at. We estimate this constant �a model for other 
countries where up to the end of April 2020 testing had largely 
been confined to those with symptoms or those at high risk. Data 
for those testing positive comes from the Johns Hopkins data bank. 
Dates at which measures to reduce the spread of the virus became 
severe (the lockdown date) were taken from the Blavatnik Centre at 
Oxford University which has constructed an index of the severity of 
measures. We choose the date at which that index rises most sharply 
to be our starting date for lockdown measures. The dates used are 
outlined in Table 1. For the United States, the date is problematic 
because actions vary substantially across states.

The estimated impact of the lockdown measures and of the 
speed of the spread of the virus pre-lockdown, are estimated sepa-
rately for each country. Since lockdown measures differ significantly 
across countries (mild in Sweden; severe in France), we expect es-
timates of the difference between �L and �0 could be substantial 
across countries. More generally, country characteristics will likely 

have influenced the path the virus took. The statistical technique we 
use allows for this. That is because the parameters that we estimate 
for the spread of the virus are estimated separately for each coun-
try so that the impact of cross country differences that affect the 
spread of COVID-19 (like population density, age structure, working 
patterns, living conditions, etc) are already allowed for. We chose pa-
rameters at the level of the country to best fit the spread of the virus 
in that country. We also allow the estimated effectiveness of lock-
downs (which might also depend on density, travel patterns, labour 
force participation, etc) to vary across countries and it is estimated in 
a way that best fits the progress of the virus in each country.

Figure 7 show the fit of the model for each country. The most 
striking result is that the values of �a that best fit the national data on 
positive tests for the virus are consistently at very high levels—gen-
erally around 0.995 (though lower for the United States). As with the 
UK results, taken at face value this would mean that there are 200 
or so people who have had the virus but whose infection was not 
recorded for every recorded case.

But what is equally striking, and much less reassuring, is that 
these best-fit estimates for �a are much higher than those implied 
by other methods for assessing the spread of the virus up to April 
2020. Some cross country studies based on deaths associated with 
the virus (eg Flaxman et al9) suggest that only between 5% and 10% 
of populations in the countries studied here have been infected. 
Results from tests for antibodies in samples of the population from a 
range of European countries suggest a similar proportion of the pop-
ulation has been infected. However, it is possible that serology test-
ing for past COVID-19 infection based on the presence of antibodies 
are not picking up cases where the infected had very few symptoms 
and not identifying others who are nonetheless not susceptible to 
the virus. There is evidence that such tests are not reliable.10

7  | INTERPRETATION, C AVE ATS AND 
IMPLIC ATIONS

Our estimates suggest that in the United Kingdom, and in the other 
countries whose data we have analysed, there were, in the period up 
to the end of April, very many unrecorded infections. For the United 
Kingdom, the best fit of the model implies that there were as many 
as 200 or so unrecorded infections for every recorded case. If that 
were true, then much of the decline in the spread of the virus would 
have been attributable to a degree of immunity having built up in 

F I G U R E  6   Time varying estimate of πa when b2 =0.1

TA B L E  1   Lockdown dates for various countries used for 
simulations

Country Lockdown date

France 16 March

Spain 10 March

Italy 23 February

Sweden 19 March (partial lockdown)

USA 16 Mar (localised lockdown)
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the population. Our model also implies that R fell from 2.95 in early 
February to just under 1 by the end of April. Our estimate of the 
parameter �L implies that a significant part of this was because of 
behavioural changes which reduced � by enough to bring R down to 
approximately 1.9. But a slightly larger reduction in R came from the 
build-up in immunity implied by the estimate of �a. At face value, our 
results suggest that both factors played a major role in bring down 
the spread of the infection sharply by the end of April.

But why should results of the SIR model designed to fit the UK 
test data (and which also seem to best fit data from Italy, Spain, 
France, Sweden and the United States) suggest a much higher rate of 
the spread of the virus than antibody test data from countries that 
have done more widespread (closer to random) testing including the 
United Kingdom and Spain? One answer is purely mechanical: if one 
wants to fit a model that tracks the data on positive tests it must be 
one where the number of infections rises very fast early on (a rela-
tively high R0 and �0). Is it possible that we have made assumptions 
which force the model to explain much more of the slowdown in new 

positive test cases by a fast rise in the immune population (which 
implies a very large group have had the virus with few symptoms) 
rather than attribute it to a very effective lockdown? One factor may 
be significant: we have assumed a 14-day delay between the start 
of the lockdown and its beginning to affect the rate of new posi-
tive tests for the virus. If that lag were much smaller, more of the 
turnaround in new cases might be attributed to the lockdown and 
correspondingly less to a rise in mass immunity. But, in fact, when 
we halve the lag between the start of the lockdown and its effect 
on � we still find that the value of �a that best fits the data remains 
very close to 1.

There is, however, one assumption that does have a significant 
impact on our results. This is that � is the same for all infected peo-
ple, whether recorded or not. It is likely that there are more asymp-
tomatic people amongst the unrecorded and it is possible that the 
spread of the virus for this group is lower than that for the symp-
tomatic. If the rate at which the asymptomatic infect people is sig-
nificantly lower than for the symptomatic, the best way for our SIR 

F I G U R E  7   Estimated best fit model for recorded new cases in each country. R0 values used are 2.95 (France); 3.30 (USA); 3.90 (Italy); 
3.90 (Spain); 2.50 (Sweden)
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model to explain the UK data is to have a much lower number of 
unrecorded cases (�a). If the transmission rate of the unrecorded is 
one half that of the recorded, but the weighted average of the two 
keeps the overall � as it was, �a falls to approximately 0.5. But, the fit 
of the model deteriorates and the RMS error is around 16% higher 
than the lowest value obtained in simulations with identical trans-
mission rates.

There is limited evidence that the transmission of the virus is 
weaker for those with few symptoms.3 But, it is clear that it matters 
for modelling the spread of the virus.11 The influential Imperial College 
study8 report does assume a lower asymptomatic transmission rate 
(by 50%). The analysis of Gupta and her team,5 designed to explain 
the early spread of the virus in the United Kingdom, appears to as-
sume a common transmission rate amongst the infected. That study 
suggested that the asymptomatic were a very high proportion of the 
infected and that the virus had spread very widely by early March. 
Our study suggests that estimates of the spread of the virus that best 
account for the data are sensitive to whether the transmission rate is 
assumed to be the same for asymptomatic and symptomatic groups.

We have found that when trying to match data in the period up 
to the end of April on the recorded cases of the virus our model ap-
pears to favour high values of �a (the unrecorded proportion of the 
total infected people). This is a consistent finding across a number of 
scenarios where we vary the mean transmission rate, the recovery 
rate and lockdown measures. It is only when the transmission rate 
for the unrecorded is much lower than for the (largely symptomatic) 
recorded cases that the best fitting estimate of �a is reduced. These 
two facts lead to two conclusions: First, that previous estimates of �a 
near 0.9,3 or even higher, are consistent with versions of a simple SIR 
model designed to track results of tests for the virus in the United 
Kingdom and other countries; but we do not make the stronger claim 
that the evidence clearly proves such a high value. Second, that re-
liable modelling of the evolution of the spread of the virus requires 
accurate measurement of transmission rates for symptomatic and 
asymptomatic groups and is sensitive to whether these are different.

In all the countries whose data we analysed, the best fit to that 
data suggests that there have been a very large number of unre-
corded infected cases for each recorded case. But the data by no 
means overwhelmingly reject the hypothesis of a value of �a lower 
by enough to mean that the main cause of the slowdown (and then 
reversal) in the arrival of new positively tested cases of the virus 
in March and April were the measures taken to curb it. But our 
results suggest that a factor that several other studies simply ig-
nore—namely that the virus had spread fast enough to itself gen-
erate substantial immunity by the spring of 2020 which slowed the 
spread—was indeed significant. While the results do not show that 
a degree of immunity clearly was more powerful than lockdowns, 
the results (which are consistent across countries) do show that it is 
likely to have been a significant factor.
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APPENDIX A

CONFIDENCE INTERVAL S FOR PAR AMETER 
ESTIMATES

Under restrictive assumptions, the parameter space within which 
the standard error of the model is within 10% of the best fit would 
very likely contain the true parameter values. Standard tests based 
on the assumption of independent and normally distributed residu-
als between data and the fit of the model would imply a small chance 
of parameters lying outside this area. The statistic s, where RSS ∗ is 
the unrestricted minimum residual sum of squares, RSSr is the sum of 
squared residuals at some other restricted value of the parameters 
and T is the sample size (in this case number of days we run the simu-
lation over) would follow a �2 distribution if all the ideal assumptions 
for OLS estimation were satisfied. At a T value of 90 the 1% confi-
dence region for that statistic with two estimated parameters would 
include only values where the standard error of the model were 
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within around 5.2% of the best value. An F version of this test, based 
on the statistic 

[
(RSSr−RSS ∗ )

k

]
∕
[
RSS ∗

T− k

]
 and where T = 90, k = 2 would 

imply a 1% confidence region including parameters generating a 
standard error no more than around 5.6% above the best fit value. 
However, the conditions for these parametric methods to be a reli-
able guide to the uncertainty over parameter estimates do not hold: 
the model is highly non-linear and the values of state variable used 
to generate predictions of yst—that is It−1 and St−1—are themselves 
generated using the estimated parameters. To overcome this, we use 
a simple bootstrap technique to judge confidence intervals for the 
parameters. We take the set of T squared residuals between data 
and the model using the best fit parameter values and also construct 
T squared residuals at some other point in the parameter space we 
wish to compare to. We construct a pooled square residual dataset 
by combining the two sets (giving 2T values), from which we ran-
domly draw 2 samples (without replacement) each of size T. For each 

pair of samples we calculate the mean difference between them. We 
repeat this 10 000 times and construct the frequency distribution of 
outcomes. We then calculate where the actual mean difference in 
squared residuals between the two parameter estimates is in this 
sample distribution. We can construct such a distribution by taking 
the point in an RMS grid (Figure 5) which gives the best fit and com-
paring the residuals to another point in parameter space defined by 
(�a = 0.9 and �L = 0.007). This value of �L is chosen as it minimises the 
RMS for �a = 0.9. The mean of the distribution of constructed differ-
ences in sums of square residuals is very close to zero (its expected 
value) and the actual difference in squared residuals based on the 
two sets of parameter estimates lies at around the 91st percentile of 
the distribution. We find this to be the case when the best fit param-
eters are compared with all combinations of values when �L is lower 
than approximately 0.12 and �a is less than 0.9. This suggests that 
these regions of parameter space can be rejected but only with mod-
erate (90%) confidence.


